Measure Theory with Ergodic Horizons Lecture 5

Now do is a subsect of the presubounder of the space
$$(P(X), d)$$
 and we let M denote the closure of she in $P(X)$ with aspect to A . We will show that M is a second part is timbly additive on M (hence atty additive).
Claim (d). The bandion $A \mapsto p^{+}(A)$ is continuous, in fact, 1 -Appendite:
 $P(X) \rightarrow [0, N]$ $p^{+}(A) = p^{+}(A = 0) = d(A, \emptyset), so$
 $p^{+}(A) - p^{+}(B)| \leq d(A, \emptyset) = d(A, \emptyset), so$
 $p^{+}(A) - p^{+}(B)| \leq p^{+}(A = \emptyset) = d(A, \emptyset) = d(A, B)$ by the triangle information.
 $P(A) - p^{+}(B)| = p^{+}(A = \emptyset) = d(A, \emptyset) = d(A, B)$ by the triangle information.
 $P(X) \rightarrow P(X)$ $d(A^{-}B^{-}) = d(A, B)$.
Claim (c). The function $A \mapsto A^{-}$ is continuous, in fact, an isometry:
 $P(X) \rightarrow P(X)$ $d(A^{-}B^{-}) = d(A, B)$.
Proof. Just into the $A \in A^{-}$ is continuous, in fact, $1 - 4p$ solite with respect to $P(X) \rightarrow P(X)$ the sum metric $d = d$ on $P(X) = A = A$.
Claim (d). The function $(A, B) \mapsto A \vee B$ is continuous, in fact, $1 - 4p$ solite with respect to $P(X) = P(X) \rightarrow P(X)$ the sum metric $d = d$ on $P(X) = P(X)$.
Thus, some is tone for $(A, B) \mapsto A \vee B$ because its a approximation of U and $n - p(A = A) = A = A$.
This implies that M is dozed under the sum metric $d = d$ on $P(X) = P(X)$.
Thus, some is tone for $(A, B) \mapsto A \cap B$ because its a composition of U and $n - p(A = A) = A = B$.
This implies that M is dozed under finite unions: if $A, B \in M$, let $A = A$ and $B = B$ for some $(A_{0}) = A + A = A \cap B = A \cap B$.
This implies that M is dozed under finite unions: if $A, B \in M$, let $A = A$ and $B = B$ for some $(A_{0}) = (B_{0}) \leq A$, then $A = N \otimes B = A \cap B$ and $A = M \otimes B \in A$.
Claim (e). p^{+} is finitely additive on the algebra M .

Redi. Let A, B ∈ dl be digioint subs, in order to show M1 p*(AUB) = p*(A) + p*(B).
Let An ⇒ A and Bn ⇒ B, where (An) (Bn) ≤ A. Then by Claim (a), p*(An) ⇒ p*(A)
and p*(Bn) ⇒ p*(B), and by Claim (A), An UBn ⇒ A UB, so a spin by (A),
p*(An UBn) ⇒ p*(AUB). But p*(An UBn) = p(An UBn) = p(An) + p(Bn) - p(An ABn).
An Bn ⇒ A (ABB) → b (AUB), But p*(An UBn) = p(An UBn) - p(An ABn).
An An Bn ⇒ A (B = Ø, hence p*(An (Bn) → p*(Ø) = 0.
Thus, p*(ALLB) ≈ p*(AN UBn) ≈ p*(A) + p*(B), we have a sorier of
how cell large enorgh n, hence p*(An (Bn) ⇒ p*(Ø) + p*(B)), white is ordering of
the (An) ≤ A and we show hat A:
Pool. Let (An) ≤ A and we show hat A:
Pool. Let (An) ≤ A and we show hat A:
Pool. Let (An) ≤ A and we show hat A:
Pool. Let (An) ≤ A and we show hat A:
Not digit A; A) = p*(UAi) ≤ ∑ p*(Ai) → D became the verice ≥ p*(A)) the onverges:
if the lock of and we show hat A:
Not digit. A: an p*(UAi) ≤ ∑ p*(Ai) → D became the verice ≥ p*(A)) the onverges:
if the first and isolated under of the show hat A:
Pool. Let (An) ≤ A and we show hat A:
Not digit. A: A) = p*(UAi) ≤ ∑ p*(Ai) → D became the verice ≥ p*(A)) the onverges:
if the lock of the unions of the show hat A:
Not implies Mt dl is closed under ofto unions: lat (Mn) be poirerise disjoint
who in all and are show Mt UM is a trady when even

$$\frac{1}{22^{n+1}}$$
. Then d(UAa, VMn) ≤ p*(UAa QUMn) ≤ p*(U(Ana Mn)) ≤ ∑ d(An, Mn) ≤ $\frac{1}{22^{n+1}}$. Then d(UAa, VMn) ≤ p*(Mm) is arbitrarily dose in ble dosed at
 $\frac{1}{2^{n+1}}$ because is in all.
Thus, we have shown Md M is a tradyebra and p* is finitely addifiere linear
 $\frac{1}{2^{n+1}}$ be a promoder.
Then $\sqrt{2^{n+1}}$ be a promoder of an algebra b an a of X.
Then $\sqrt{2^{n+1}}$ be a promoder of a man algebra b an a of X.
Then $\sqrt{2^{n+1}}$ be a promoder of a man algebra b an a of X.
Then $\sqrt{2^{n+1}}$ be a promoder of a man algebra b an a of X.
Then $\sqrt{2^{n+1}}$ be a promoder of a man algebra b an a of X.
Then $\sqrt{2^{n+1}}$ be a promoder of a man algebra b an a of X.
Then $\sqrt{2^{n+1}}$ be a promensume on

If
$$\mu$$
 is activite, then in Each, $\nabla = \mu^{\pm}$.
Read. For the inequality $\nabla \leq \mu^{\pm}$, it is enough to show the for each $B \in Ar_{0}$
and n_{M} of the cover $(B_{n}) \leq A$ of B_{n} we have $\nabla(B) \leq \sum_{v \in W} \mu(A_{m})$. But this
is by other subadditivity of ∇ :
 $\nabla(B) \leq \nabla(A_{n}) \leq \sum_{v \in W} \mu(A_{m}) = \sum_{v \in W} \mu(A_{m})$.
For the equality $\nabla = \mu^{\pm}$, it is enough to prove for the case $\mu(X) < C_{0}$, becase to phile
ense, i.e. $X = \bigcup_{X = M}$ where $X_{n} \in A$ and $\mu(X_{n}) < C_{0}$, reduces to the finite case
by the fact weat that $\nabla = \sum_{v \in W} \nabla I_{X_{m}}$.
Thus, suppose $\mu(X) < C_{0}$. Then of is dense in $A > 0$, reduces to the finite case
by the fact weat that $\nabla = \sum_{v \in W} \nabla I_{X_{m}}$.
Thus, suppose $\mu(X) < C_{0}$. Then of is dense in $A > 0$, reduces to $E = \overline{A}$.
But we alreadly know the for all $A, B \in A > 0$.
 $|\nabla(A) - \nabla(B)| \leq \nabla(A \setminus B) + \nabla(B \setminus A) = \nabla(A \cap B) \leq \mu^{*}(A \cap B) = d(A, B)$,
to the fact the subschool $A \to \nabla(A)$.
 $A = \nabla T > 0$, ∞ .
Now we have the digetion of the diane ∇ and μ^{\pm} on $A > 0$ which one equal
 $D = have be no continuous functione ∇ and μ^{\pm} on $A > 0$.
 $A = \frac{1}{C_{0}} \frac{1}{C_{0}} A$ is the distered with the whole $A > 0$.
 $D = \frac{1}{C_{0}} \frac{1}{C_{0}} A = \frac{1}{C_{0}} \frac{1}{C_{0}} A = \frac{1}{C_{0}} \frac{1}{C_{0}}$$

Attempt 2: Let & be the collection of half-opper indervals [a, b), shere acts
one extended reals from [-0, 00]. Then under that A is an algebra and define:
$$p(A) := \begin{bmatrix} 0 & \text{if } A \neq O \\ 0 & \text{if } A \neq O \\ 0 & \text{if } S \neq J \end{bmatrix}$$

he all A $\in A$. Then for all $S \leq |R|$, $p^*(S) = \begin{bmatrix} 0 & \text{if } S \neq J \\ 0 & \text{if } S = O \\ 2 & \text{dro} is the Borel s-algebra of R and the following are two other extensionsof p to $2 & \text{dro} s$:
 $p_1 := \text{combing measure on } |R|$, i.e. $p_1(B) := \begin{bmatrix} 1B1 & \text{if } B & \text{is finite} \\ 0 & \text{otherwise} \end{bmatrix}$
 $p_2(B) := \begin{bmatrix} 0 & \text{if } B & \text{is all} \\ 0 & \text{otherwise} \end{bmatrix}$
Thus, having the labergue and Bernoulti(b) premeasures on the algebras that generate
all Borel sites in \mathbb{R}^n and \mathbb{R}^n , we get measures defined on the Borel
subwh of X. A Borel space X , we let $O(X)$ denote the analytics of $O(X)$.
In pedicular, the labergue and Bernoulti(p) measures are Borel measures.$